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ABSTRACT

In the field of granular decomposition of sound, the Match-
ing Pursuit algorithm is particularly well suited in rep-
resenting signals with simple sonic entities localized in
time and frequency. Our main goal here is to extend this
method towards a sound decomposition on a set of arbi-
trary microsounds leading to a more adaptive framework.

1. INTRODUCTION

In 1946, Dennis Gabor introduced the idea that any sound
could be decomposed into a set of simple acoustical events
called quantum [1]. This granular model of sound was
perceptually validated according to the limitations of the
auditory system dealing with time-frequency discrimina-
tion. Each of these acoustical events corresponds to a lo-
cal Time-Frequency component of the sound and thus can
represent a large variety of signal structures from tran-
sients to pitched sustained parts.

This theory of signal and perception introduced a new
approach to synthesize sounds called Granular Synthesis.
The main principle of this technique is the accumulation
of a large amount of basic parametric sonic events called
grains. Iannis Xenakis was one of the first music com-
posers who used the grain as the basic symbolic compo-
nent of some of his pieces (mostly instrumental) and thus
broke the wall between micro and macro musical struc-
ture. Since the 1970s, Curtis Roads has explored many
aspects and applications of this synthesis technique from
real-time pitch shifting of sounds to complex textures gen-
eration [2]. He particularly studied the perception effects
of the different synthesis parameters and proposed an ex-
haustive categorization of the diverse applications accord-
ing to the constraints/relations applied to these parame-
ters. Thus, lots of high-level control strategies have been
introduced but with an empirical background.

From here comes our interest to deduce granular syn-
thesis parameters from previously analyzed sound, that is
to say to design a granular analysis/synthesis tool. This

idea comes with the application of such techniques to nat-
ural noisy sounds in mind. It points to sounds that can be
defined as the accumulation of more or less complex sonic
grains, with their proper temporal and spectral variability.
For example, the sound of rice falling onto a metal plate
is composed of thousands of elementary “ticks”; the rain
produces, in the same way, the accumulation of a large
amount of water droplet microsounds...

In fact, in the real world, when multiple realizations of
a same event, of a same phenomenon occur, we can ex-
pect these types of sounds. Our goal [3] is thus to analyze
natural sounds in order to extract the temporal and spec-
tral distribution of those grain streams, and to model these
evolutions/fluctuations by correlated statistical laws. We
expect,in fine, the possible synthesis of sounds perceptu-
ally ascribable to the class of the analyzed sound. This
might lead us to the classification of granular sounds ac-
cording to their characteristics. Thus we have to detect
the grain parameters of the analyzed sound and this pa-
per will focus on this task. The first part presents briefly
the Matching Pursuit algorithm and its limitations for our
application. Then we propose an extension of this algo-
rithm to the spectral domain that we have called Spectral
Matching Pursuit.

2. THE MATCHING PURSUIT DECOMPOSITION

Since the 1990s, new signal analysis techniques have found
to be directly related to the granular representation of sounds.
Unlike the classical Fourier Transform massively used for
audio analysis purposes, the Matching Pursuit (MP) algo-
rithm proposed by Mallat and Zhang [4] in 1993 is par-
ticularly well suited to decompose sounds into elementary
sonic entities. In fact, the backgrounds of Fourier Trans-
form and MP are not so different: these methods both
project the analyzed signal on a set of elementary wave-
forms. The main difference is that the set of functions
used in MP is redundant and, unlike in Fourier Transform,
doesn’t constitute a basis in the signal space. This feature
allows the representation of a large variety of signal struc-



tures in a compact manner, i.e. with the smallest set of
non-zero coefficients. Indeed, in the Fourier case, a sig-
nal well localized in frequency but not in time will have
a compact representation. Whereas, a signal well local-
ized in time, like an impulse, will have a non-compact
representation, the method characterizing this simple sig-
nal structure in a less efficient manner.

The idea of MP is to use an overcomplete dictionary
of functions to represent in a compact way a wide range
of signal time-frequency behaviors. The traditionally used
dictionary is a set of symmetric Gabor atoms indexed by
their frequency and duration [4]. Some work has intro-
duced the use of asymmetric functions such as damped
sinusoids [5] resolving pre-echo artifacts on transients.

The decomposition process is a greedy algorithm so
the quality of the representation, in terms of approxima-
tion error, is directly related to the number of iterations of
the algorithm. At each stepi, it chooses the atomgm(i) in
the dictionaryD that best approximates the residueri[n]
of the analyzed signalx[n]. Then, this atom contribu-
tion is subtracted from the residue and the same scheme
is applied again to the new residueri+1[n]. The algorithm
stops either when a specific number of atoms has been de-
tected or when the norm of the residue is below a user
defined threshold. The algorithm starts withr1[n] = x[n]
and at each iterationi it computes :

ri+1 = ri − 〈gm(i), ri〉gm(i)[n] (1)

The Matching Pursuit, in its basic form, uses the in-
ner product for the correlation calculation between the an-
alyzed signal and the dictionary atoms. More complex
distance functions have been introduced in the HRMP al-
gorithm to reduce the pre-echo artifact avoiding creating
energy where there was none [6].

Figure 1. The representation of a water sound Matching
Pursuit decomposition.

Thanks to theLastWavesoftware [7], We have success-
fully tested this method on a variety of complex sounds.
It has been found to be particularly well suited for sound
a priori composed by simple sinusoidal grains, like wa-
ter sounds. An example of decomposition of this type of
sound is represented in figure 1. This figure shows grains
according to their Wigner Time-Frequency distribution.

In theory, we can represent any type of granular sound
with this method but we have to pay particular attention

to keep the inherent granular structure of the natural an-
alyzed signal. Indeed, lots of granular sound classes in
the real world are composed of grains with a complex fre-
quency structure. We can cite “scratching” or “cracking”
sounds made by the accumulation of thousands of com-
plex microsounds not necessarily deterministic. Those
can be decomposed by the algorithm but in breaking the
complex inherent grain into a large set of simple atoms.
This decomposition behavior is not desired here. The gr-
ains have to keep a physical sense and to be directly re-
lated with the analyzed signal. We extend the Gabor’s
sonic quanta theory to an arbitrary set of complex grains.
Thus, it leads us to a granular decomposition method onto
a set of arbitrary microsounds. The temporal domain sig-
nal model, used in MP, shows its limitations in this pur-
pose especially with grains containing a significant stochas-
tic part. From here comes the idea to work in the fre-
quency domain for the decomposition process. For that
purpose, we propose in next section to extend the MP al-
gorithm to the spectral domain.

3. SPECTRAL MATCHING PURSUIT

3.1. Principle

The principle of adaptive granular decomposition of the
MP is retained. The main idea is, rather than working
with the temporal signal, to use its spectrogram for sig-
nal/atoms distance calculation. Spectrograms provide an
accurate representation of various signal behaviors. With
spectral smoothing techniques, we can model non deter-
ministic signals giving an approximation of their spectral
power density. This method can be compared to dictio-
nary based spectral form recognition. Moreover, the use
of dictionaries offers a great advantage especially because
of their adaptivity to a given analyzed signal. Indeed, it
gives the user the ability to configure the set of atoms he
wants the signal to be represented with. For our applica-
tion to natural noisy sounds, the dictionary construction is
a non-trivial problem. The parameters chosen to charac-
terize atoms must be compatible with the granular synthe-
sis engine. As we will see later, we propose to generate the
dictionary by transformations of one or multiple “charac-
teristic atoms” directly picked up from the analyzed sig-
nal.

3.2. Algorithm

Let x be the analyzed signal andgk the dictionary atoms.
The spectrogram|X(t, f)| of the signalx, with the re-
duced frequencyf = fhz/Fs, is defined as :

|X(t, f)| = |

N−1∑

n=1

w[n]x[t + n]e2jπfn| (2)

We start from the assumption that|X(t, f)| can be decom-
posed as a weighted sum of|Gk(t, f)| :

|X(t, f)| =
M∑

i=1

αi|Gm(i)(t, f)| (3)



We now work with matrices and no longer with tem-
poral vectors. To simplify notations and the method struc-
ture, we introduce a vectorial form of the spectrograms
X [pt,f ] defined as :

X [pt,f ] = |
N−1∑

n=0

w[n]x[t × d + n]e2jπfn| (4)

with the index pt,f = tN + fN (5)

whereN size of the STFT andd the step size in order to
tune their overlap.

At each stepi, the algorithm must choose in the dictio-
naryD the atomGm(i) which minimizes the two-norm of
the residueRi+1 defined by :

Ri+1 = Ri − αiGm(i) (6)

with m(i) the index of the atom chosen at stepi. The
algorithm starts withR1 = X . We have to findGm(i) as :

Gm(i) = arg minGm(i)∈D‖Ri+1‖
2 (7)

Moreover the orthogonality principle gives :

〈Ri+1, Gm(i)〉 = 〈Ri, Gm(i)〉 − αi〈Gm(i), Gm(i)〉 = 0
(8)

Hence :

αi =
〈Ri, Gm(i)〉

〈Gm(i), Gm(i)〉
= 〈Ri, Gm(i)〉 (9)

implying theGk to be unit-norm. We can deduce the
two-norm of the residual signal‖Ri+1‖ :

‖Ri+1‖
2 = ‖Ri‖

2 − |αi|
2 (10)

Minimizing ‖Ri+1‖
2 implies maximizing|αi|

2. We
thus have to choose at each stepi the atom which has the
greater correlation coefficient|αi| = |〈Ri, Gm(i)〉|.

3.3. Dictionary construction

The main point here is to keep the dictionary structure re-
lated to granular synthesis parameters. The analysis pro-
cess gives us results as a list of amplitudes, times and in-
dexes of the chosen atoms. In an underlying way, this
index thus point to a set of parameter used to create these
atoms. The synthesis engine developed at GMEM in the
Max/MSP environment currently support sinusoidal gr-
ains and buffer based grains (i.e. recorded sound granu-
lation ) with the control of their frequency/transposition.
Our first experiment to construct the dictionary is thus to
pick one or more grains which seem to be the more char-
acteristic in the original signal. These grains are then di-
rectly used in the synthesis engine buffers. According to
the synthesis features available, we experimented gener-
ating the dictionary atoms by transposing the “character-
istic grains” on a given scale, thus modifying their pitch,
length and spectral envelope. More transformations can
be considered but with paying a particular attention to the
synthesis capabilities.

4. DECOMPOSITION EXAMPLES

Here is a concrete example of gravel sound decomposi-
tion with such techniques. We have especially focused
on the hard task of dictionary construction, which greatly
influences the analysis results. The spectrogram of this
sound is represented in figure 2. It is a quite dense gran-
ular sound composed of complex grains, made by rocks
knocking against one another.

Figure 2. Gravel sound spectrogram from 0 to 10000Hz.

We will give 3 examples of decomposition according
to different dictionary construction processes. This step
of the method is critical in terms of analysis result relia-
bility and usability. As we saw previously, the main idea
in order to adapt the analysis method to the synthesis en-
gine is to take one or more grains in the analyzed signal
and to transform them. Here, only transposition in tempo-
ral domain has been used.

A very simple first example is to put just one grain, pre-
viously picked up from the sound, in the dictionary. The
spectrogram of the sound and the atom has been calcu-
lated using 4096 as FFT size and 128 as hop size. We
have directly specified 1500 as the number of atoms we
wanted to represent the signal ( corresponding to 1500 it-
erations of the algorithm ). The algorithm gives us times
of occurrence and amplitude of the detected atoms. The
spectrogram of the reconstructed signal is represented in
figure 3.

Figure 3. Spectrogram from 0 to 10000 Hz of the recon-
structed sound with a single atom dictionary.

As expected, the resulting sound is very monotone. In-
deed we ignored the spectral variability of the grains in
the analyzed signal. However, it provides a good repre-
sentation of its temporal structure.

To improve the representation of the spectral variabil-
ity, we constructed, as a second example, a dictionary by
transposing the previously chosen “characteristic grain”
on a given scale. It has been done by resampling the ini-
tial grain, in the temporal domain, by a factor going from
0.5 to 1.5 with a 0.1 step. This scale has been chosen ac-
cording to an estimation of the spectral variability of the



analyzed signal. The dictionary now contains 10 grains.
The number of iteration steps is still set to 1500.

The reconstructed sound is more interesting than the
first example. Indeed, it covers a wider range of the spec-
tral space. Although its spectral content is still quite far
from the original one. Moreover, the unique use of trans-
position to generate grains can give the reconstructed sound
an undesired synthetic color. The result is obviously highly
correlated with the “characteristic grain” choice we made.
The choice of an optimal grain would have certainly led
us to a more reliable result. A solution to this problem
is the use of multiple “characteristic grains” to construct
dictionaries.

The third example shows a decomposition on a dictio-
nary constructed with multiple sound grains. Every one
of the 4 “characteristic grains” has been chosen by hand
to be the most distant, “spectrally” speaking, from each
other, in order to better represent the grain variability of
the analyzed sound. The dictionary has been generated by
transposing each grain by a factor going from 0.8 to 1.2
with a 0.1 step.

Figure 4. Spectrogram from 0 to 10000 Hz of the recon-
structed sound with the 4 transposed grains dictionary.

We can see in figure 4 that this decomposition handles
more various frequency structures according to those seen
in the original signal. This remark is reinforced when we
look at the energy decay of the residual spectrum of the 3
decompositions represented in figure 5. We can see that
the use of multiple characteristic atoms, corresponding to
the thick black line, gives a much more reliable approx-
imation of the sound. Indeed, in the first two examples,
there are parts of the signal the grains can’t cover, the
residual energy remaining quite high after the 1500 iter-
ations.

The last decomposition result sounds much more nat-
ural and, although no formal test has been made, it can
be perceptually recognized as a gravel sound. Indeed,
the transposition artifact we had in the second example
is greatly reduced by the spectral diversity brought by the
4 “characteristic grains”.

5. IMPROVEMENTS AND FUTURE WORK

This analysis tool is an important part of the “GMU” pro-
ject at GMEM [3]. Although it is still in its early stages
of design and development, it provides promising results
in the domain of granular decomposition. The sound syn-
thesis can produce realistic sounds sometimes very close

Figure 5. Decay of the residual spectrum energy (first
example is thin grey, second is thick grey and last is thick
black).

of the original. However, there is still lot of work espe-
cially in methods to construct the dictionary. This part is
really critical in terms of decomposition reliability. We
have especially to evaluate the feasibility of an automatic
choice method of “characteristic grains”. An other ap-
proach would be, when the production of the analyzed
signal is reproducible, to record one (or several) grain to-
ken as an elementary waveform for dictionary construc-
tion. At a higher level, the next steps we have to accom-
plish are to study the parameter fluctuation laws and the
correlation between them for more flexibility in synthesis.
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