
ADAPTIVE SPATIALIZATION AND SCRIPTING CAPABILITIES IN THE
SPATIAL TRAJECTORY EDITOR HOLO-EDIT

Charles Bascou
GMEM

Centre National de Cŕeation Musicale
15 rue de Cassis
Marseille, France

charles.bascou@gmem.org

ABSTRACT

This paper presents recent works on controlling and editing
sound spatialization on multiple speakers based on sound
descriptors. It has been implemented as an extension of
Holo-Edit, an OpenSoundControl compliant multitrack spa-
tial trajectory editor developed at GMEM. An SDIF inter-
face has been implemented allowing importing and visual-
izing sound descriptors generated by third party softwares.
A set of scripting tools is proposed to process and map
these time-tagged data to sound trajectory generation.

1. INTRODUCTION

Sound spatialization has become an important field in the
past decades. From Karlheinz Stockhausen early experi-
ments of moving acoustic sound sources around a set of
microphones to contemporary cinematographic multichan-
nel mastering, there has been a lot of growing interests in
experimenting with sound diffusion across multiple loud-
speakers. We can distinguish two main approaches in the
work with sound in space. One has been the GRM’s Acous-
monium1 , initiated by Francois Bayle in 1974 which tends
to spatialize stereo tracks manually from a mixing desk
onto a loudspeaker orchestra. In its main principle, using
an eclectic set of speakers allows the sound to be spatial-
ized by itself, even with no intervention from the electroa-
coustic music performer. The acoustic characteristics of
the different loudspeakers and their position in the concert
hall makes them unique sound sources with their specific
color andtimbre, some enhancing high frequency, some
medium ones, etc. Movements of sound are then created
obviously by electroacoustic music interpretation but also
by themovementand theenergyof the sound itself. The
other main approach has been the virtual acoustic model
where sound spatialization is performed by mathematical
and acoustical laws of sound in space. One is for example
the distance cue which is simulated by attenuating sound

1 Groupe de Recherches Musicales - Paris

Copyright: c©2010 Charles Bascou et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproductionin any medium, provided

the original author and source are credited.

volume (roll-off), filtering high frequencies (air absorp-
tion) and increasing the reverberation ratio of the spatial-
ized sound. Here, movements of sound is done by control-
ling the virtual source position with calculated trajectories
or via external input devices such as joystick or graphics
tablet.

The focus of this paper is between these two models,
in other words to get virtual acoustic movements of sound
closer to the sound properties and behaviors. Our software
environment, Holo-Edit, is a graphical editor for spatial-
ization trajectories and is particularly adapted for control-
ling virtual acoustic DSP softwares. Our main goal here
is to enhance trajectory editing and spatial cues by taking
into account the inner structure and dynamic profiles of the
sound to be spatialized. This is using the principle of adap-
tive audio effects [1] applied to sound spatialization. We
will first detail the main features of the used environment
Holo-Edit, then detail our motivations and finally present
the proposed adaptive spatialization framework.

2. HOLO-EDIT FEATURES

Holo-Edit is initially part of the HoloPhon project initi-
ated in 1996 by Laurent Pottier at GMEM2 [2]. This
project was focused on sound spatialization editing and
control. Growing computing power allowed to develop
custom DSP spatialization softwares written in MaxMSP,
under the generic name Holo-Spat. For now, we will detail
Holo-Edit features, as it is the main environment for our
experiments.

2.1 Workflow

Holo-Edit is a standalone application written in Java/Jogl.
The main underlying paradigm is the control of external
DSP softwares via the OSC protocol. In [3], we showed
the benefits of a stratified approach in sound spatialization
environments. In this scheme, Holo-Edit has its place as
an authoring tool for composing with space. All DSP pro-
cesses are handled in other layers, e.g. in external soft-
wares like MaxMSP, PureData, SuperCollider, etc. Holo-
Edit only deals with movement of sound in space, using
the timeline paradigm found in traditional DAWs to record,
edit, and play back control data. Although a straightfor-
ward OSC protocol has been defined in order especially to

2 Groupe de Musique Experimentale de Marseille

http://www.gmem.org
mailto:charles.bascou@gmem.org
http://creativecommons.org/licenses/by/3.0/

Figure 1. Time Editorview with cartesian xyz components
and sound waveform.

keep Holo-Edit and the external spatialization software in
sync in terms of time region selection and track muting and
visualizing, an effort is made to standardize the way Holo-
Edit deals with common control messages like source po-
sition. As it is the most promising attempt in that purpose,
we are currently following the SpatDIF [4] initiative, with
first experimental interfaces in the Jamoma Modular envi-
ronment [5].

2.2 Multitrack Data representation and editing

Holo-Edit manipulates trajectory objects which is a set of
time-tagged 3D points. These trajectories have an onset
and offset time. Various graphical editing function can be
achieved on these object like stretch, extend, trim, join.
Maximum time resolution for the trajectories and points
has been set to one millisecond allowing precise sound
event/position mapping.

Additionally, audio waveforms can be imported from
traditional sound files, and included in the composition.
Sound cues are then triggered in parallel with the trajecto-
ries. It also helps in synchronizing sound events and corre-
sponding position in space while editing.

Various representations of spatialization data are pro-
posed. TheRoom Editoris a top-view editor of the vir-
tual scene where you can move points and trajectories.
TheTime Editorin Figure 1 focus on time/data representa-
tion in a similar way as DAW softwares do for automation
curves. The user can view and edit individually cartesian
and polar coordinates components as curves. In this view,
you can also visualize pre-imported sound waveforms time-
aligned with corresponding 3d positions.

The 3d Roomshown in Figure 2 offers a 3d represen-
tation of the trajectories in the virtual scene although no
editing can be achieved in it.

Holo-Edit is closely inspired by traditional Multitrack
DAW. TheScoreview uses the timeline paradigm to repre-
sent the whole spatialized composition. Sound blocks and
trajectory blocks can be moved and copied from one track
to another. Traditional solo and mute functions are also
implemented.

Figure 2. 3D Roomvisualization.

2.3 Data Recording via OSC

Trajectories can be generated in various ways. One of them
is the ability to record track position in real time from an
external program or device via the OSC protocol. Sev-
eral tracks can be recorded at the same time. For each
track, thesegmentmessage allows to start a new trajec-
tory where all future recorded points will be stored. It is
particularly meaningful when using graphics tablet as in-
put device, starting a new trajectory each time the stylus
touches the tablet. In this purpose, user can import sound-
files and then, while playing them, record in real time their
corresponding trajectories. All the proposed transforma-
tion functions can be applied then to smooth, scale or trans-
late the recorded movements.

2.4 Generation/transformation plugins

In the Holo-Edit environment, the ability to process spa-
tially and temporally the spatialization data is an impor-
tant feature. Graphical editing could be a good help but
sometime lacks accuracy for precise and repetitive tasks.
A plugin interface has thus been defined for generative and
transformative functions. They share a common scheme
in their application. Functions are applied into the global
time selection. They can output and/or apply the result on
one, all or only visible tracks. It allows to make batch pro-
cess on several tracks and trajectories. There are three pro-
cess categories :Generative Functions, Spatial Transfor-
mationsandTemporal Transformations. Generative Func-
tions includes circular, lissajou, brownian and random al-
gorithm.Spatial Transformationsdeals with basic geomet-
rical transformation like rotation, translation, proportion.
It also includes some more specific processes like exag-
geration which scale the local movement of a trajectory
leaving the main form unchanged. In theTemporal Trans-
formations, the user can perform time stretch, acceleration
or time reverse.

3. MOTIVATIONS

One often uses algorithmic functions to generate move-
ments of a specified sound. In this framework, circular,
brownian and random movements are the most commonly

used and offer, in their combinations, a wide range of dif-
ferent spatial figures. Though their efficiency, it is not so
easy to tune their parameters to fit the spatialized sound
behaviors, for example, finding the correct circular speed
with an iterative sound (supposing quasi-synchronous iter-
ations). The same problem comes when using random or
brownian movements on chaotic granular sound materials
where we would wish internal sound events to be placed
individually. Quite often it results in ”spatial contradic-
tions” that is when the spatialization movement contradict
the sound internal behavior andenergy. Note that thisen-
ergy is quite a subjective and cultural notion. Instrumental
sound is good illustration of this phenomenon. When lis-
tening to instrumental sound without any visual stimuli,
the felt movement and energy are generally strongly asso-
ciated with those engaged in the instrumental interpreta-
tion of a musician. String instrumental sound for example
inspire the back and forth movement of the bow. In this
framework, the main idea is to find in sound dynamic char-
acteristics these inner profiles, such profiles helping thenin
setting the virtual movement in sync with its properties.

In a traditional sound synthesis workflow, it is not com-
mon to generate spatialization movements when synthesiz-
ing or mixing sound. In the purpose of generating/enhanc-
ing movements closely related to the sound inner struc-
ture, it is obvious that when working with sound synthesis,
we could deduce meaningful time profiles from the differ-
ent modulations and interactions defined in the synthesis
process. Such time profiles could greatly help in creating
spatial movements. Unfortunately, they are not so easy to
route and store in an efficient way. If the internal con-
trol signals of these synthesizer are accessible, MIDI se-
quencers could be a solution but with a known lack of data
and time accuracy.

Moreover, spatialization is still a process which is quite
difficult to setup in a home studio environment. This work
often takes place in dedicated spatialization studio. Thisis
contributing in making sound generation/mixing and spa-
tialization two processes which hardly come together in the
same place and time.

The main idea is then to be able to analyze sound to
be spatialized, extracting characteristic profiles in its struc-
ture. These profiles can then be mapped to various param-
eters of the trajectory generation/transformation.

4. ADAPTIVE FRAMEWORK

4.1 SDIF Data import and Visualization

SDIF (Sound Description Interchange Format) [6] is a stan-
dard generic, open, and multi platform format for sound
description data storage. An SDIF file contains one or
more sequences of entities calledframes. Each Frames
are time-tagged and typed among a wide range of defined
sound descriptors. For example, let’s cite Fundamental
Frequency, Loudness, Noisiness as traditional synchronous
data flux associated with sounds. These descriptions can
also be asynchronous like transient markers or chord sep-
aration markers. In this case data rate is not necessarily
constant.

Figure 3. Waveform and its fundamental frequency shown
in theSoundPoolwindow.

Figure 4. Scorewindow with waveform and data visual-
ization on top of the trajectories.

We chose SDIF as it is widely adopted in sound analysis
softwares like IRCAM AudioSculpt and AsAnnotation or
Michael Klingbeil’s SPEAR [7]. Current SDIF implemen-
tation includes a library in C/C++. Since Holo-Edit has
been written in java, we had to find a way for interfacing
with this standard SDIF library. Thanks to the SWIG inter-
face (Simplified Wrapper and Interface Generator) [8], we
could develop a native java wrapper for SDIF. It is com-
posed of a java classes and a platform specific jnilib.

SDIF import in Holo-Edit is done via theSoundPool
window. As shown in Figure 3, one can overlay sdif data
and the corresponding previously imported waveform. These
data objects can then be dropped in theScorewindow on
a specific track. At this step, these objects are not yet in-
teracting with the spatialization score. They act more as
visual cues and markers for enhanced editing especially in
the TimeEditorwindow where precise resynchronization
of trajectories and points can be achieved.

An important feature is that data objects can be linked
with waveform objects so that they are always in sync in
the Scoreand theTimeEditorwindow. It is particularly
useful when using these data to generate or modify trajec-
tories as we will see in the next section.

4.2 Direct Mapping Plugins

One key feature of the SDIF support is the ability to use
these time profiles to generate or transform trajectories. A
first step has been to propose a simple plugin interface that
converts these time-tagged values into 3d point parameter.

This generative function works in the same scheme as
the others functions do. It uses the global time selection to
define the region where the new trajectory will be written.

It generates trajectory in the selected tracks. Data access
is also done according to the time selection. The plugins
scans the score for each overlapping data object instances
in the score and then construct a menu on the interface for
selection of the data we want to use. A special naming pro-
tocol has been defined referencing a data object instance
characterized by the SDIF filename, the SDIF stream id,
its begin time in the score and its parent track. For ex-
ample, an fundamental frequency data object instance on
track 2 starting at 52 seconds would be named :

3-francesca_04.f0.sdif - st.0 1FQ0 - begin time
=0:0:52:000 - Track:2

Note that, as these data objects are in a kind of global
scope, the plugin can access them from all tracks. That can
avoid duplicating the same data object on multiple tracks
when the user wants to generate different mapping of the
same data on multiple tracks.

In the cartesian coordinates version of the plugin, the
user can assign a different data instance to each XYZ com-
ponents. As there can be multiple streams of time tagged
value in a data object, user has to choose an available one
depending on the analysis software which generated the
SDIF file. For Example, with fundamental frequency data
object (FQ0), AudioSculpt gives us four streams which are
Frequencyin Hz, Confidencecoefficient,Scorecoefficient
and linearRealAmplitude. All these values have different
unit so a scaling process has to be made. This is done au-
tomatically with linear mapping from minimum and max-
imum of the data values to -1. and 1. for cartesian com-
ponents. In fact, scaling and translating can be made af-
terwards with all the graphical and algorithmic functions
already available so there is no need to propose scaling fea-
ture in the plugin interface.

This direct data mapping can be interesting for simple
experiments. It allows to easily transform data points into
trajectory points. These profiles can then be shaped in
space and time with all the available editing functions like
scaling, translation, rotation, etc. But as we will see in the
next section, it becomes quite limiting when using more
complex data (like multidimensional ones) or experiment-
ing original transformative plugins.

4.3 Script interface

The direct mapping plugins presented in the last section
can be really helpful for simple data. But quickly comes
the need to have more complex mapping of these profiles.
Obviously, in the scheme of adaptive spatialization, this
process is central; this is where the user defines the rela-
tion between sound characteristics and spatial cues. As it
is a very vast field, it is important to let the user the abil-
ity to experiment by himself original relations. We thus
had to find a workflow as open as possible with a rich ex-
pressivity that can well define complex relations and this is
what scripting can do. Notably, scripts may be particularly
useful in different cases:

1. Performing repetitive tasks efficiently.

2. Applying algorithms with precision on some data.

3. Getting some information about available data.

4. Mathematical functions availability.

5. Creating libraries for trajectory transformations and
generations.

6. Algorithms fast experimentations.

Thanks to theGroovyproject [9] which aims to propose
an agile and dynamic language for the Java Virtual Ma-
chine, we could build a script interface integrated in the
internal Holo-Edit environment. Groovy is built on top of
Java and is found to be an easy to learn and powerful object
oriented scripting language. Its benefits are multiple : on
the fly execution of code from a text buffer or from interac-
tive console, dynamic typing, Java context integration, and
so on. The last one is particularly interesting as it easily
allows to access to any java classes and functions the main
java program uses. In our case, it has greatly simplified the
interface with the Holo-Edit Java objects such as 3d points,
trajectories and tracks. Moreover an abstract java class has
been developed to facilitate scores data access and script-
ing with them.

TheScriptwindow presents a text area where the script
can be edited. An additional text area is shown called ”Val-
ues from score” where useful local variables are proposed.
They arebegin, endanddurationof the global time selec-
tion when the script function was called. It also present
the name of the available SDIF data instances overlapping
the time selection. This name can be copy and paste in the
script and is used as a reference for data instances. Getting
data instance handle is made for example with :

mySDIFdata = getSDIFdata("quat-cel1.f0.sdif -
st.0 1FQ0 - begin time=0:0:38’213 -
Track:0")

Some helper functions has been included in the inter-
face especially for sampling data at a specific time making
transformative script easier when point timestamps of the
transformed trajectory have to remain unchanged.

Here is a simple example of transformative script where
fundamental frequency is mapped to the z components of
the trajectory points :

import holoedit.data.*;

f0data = getSDIFdata(gp,
"3-francesca_04.f0.sdif - st.0
1FQ0 - begin time=0:0:52’290 - Track:2")

int dateBegin = 5171;
int dateEnd = 74636;
double dur = 69465;

float min = minFieldValue(f0data,0);
float max = maxFieldValue(f0data,0);
float mean = meanFieldValue(f0data,0);
float range = max - min;

HoloPoint point;
int date;

for (int i = 0; i < gp.copyTrack.size(); i++)
{
point = gp.copyTrack.elementAt(i);
date = (point.date - dateBegin)*10;
if(hasDataAtTime(f0data,date))

point.z = 50 + (getDataAtTimeField(f0data,
date,0) -mean) * 200 / range;

}

Figure 5. Time Editorview of the trajectory generated by
brightness mapping.

Another benefit of using script is that the user can gener-
ate or transform a trajectory from multiple data instances.
For example, he could use voiced/unvoiced segmentation
and fundamental frequency to define rules of spatial behav-
iors; let’s say for example random movement for unvoiced
part and frequency dependent position for voiced part.

4.4 User case: sound brightness mapping

We will present in this section an example of application
of this adaptive framework. We chose to use sound bright-
ness as it has found to be very efficient to discriminate
sound events in a complex mix. Its profile contains a lot
of relevant informations as it detect timbre abrupt changes.
It could be compared to fundamental frequency but with
more robust results in a great variety of sound materials
(e.g. non harmonic sounds or complex mixture). An inter-
esting feature of sound brightness mapping is that its pro-
file contains good representation of transients and steady
parts of the sound.

Moreover, this example is good illustration of data fil-
tering and processing. Indeed, no known end-user software
can produce brightness, or spectral centroid its DSP equiv-
alent, SDIF files. We thus had to compute it directly from
spectral data. In that purpose, we used a spectral peak anal-
ysis to preprocess and simplify the raw spectrogram. The
peak analysis outputs for each frame a set of peaks defined
by its frequency, amplitude and phase. So we included in
the mapping script the computation of an estimate of the
spectral centroid, that is the frequency barycenter of the
peak set. It gives us a one dimensional data array easily
mappable to a trajectory parameter.

The experiment has been to map this value to the az-
imuth of the source, the distance remaining constant. The
data rate, and consequently the point rate, has been set to
5 ms to be able to capture fast timbre changes. The result
is kind of spatial magnification of the sound. Each occur-
ring similar event gets its own position in space giving a
very coherent spatial image of the sound. The Figure 5
shows the resulting trajectory in the Time Editor with ray,
azimuth, data and waveform curves. This technique works
great for complex mixture or sound material but harmonic
instrumental sounds get poorer results as theirtimbreevolve
much slowly. In this case, it should be probably better to
elaborate algorithms based on fundamental frequency.

5. CONCLUSIONS AND FUTURE WORK

Adaptive spatialization offers a great field of new possi-
bilities in trajectory generation and transformation. We
proposed, to exploit it, an experiment interface in end-
user spatialization authoring tool. It has the benefit to al-
low original editing functions while keeping fast and easy
graphical fine tuning of spatial behaviors. We planned some
enhancements of the script interface to get to a more global
scope on the spatialization score. The generation of trajec-
tories on multiple track for example could help when gen-
erating parallel hardly correlated trajectories. Some partic-
ular generation and transformation algorithms, especially
the one based on sound brightness, will also be imple-
mented has standard Holo-Edit plugins in order to make
them available to user impervious to script editing. The
Holo-Edit software and sources are available for download
on the GMEM websitehttp://www.gmem.org.

6. ACKNOWLEDGMENTS

The author would like to specially thank Leopold Frey and
Charles Gondre for their great contributions to the develop-
ment of this project and composer Rodrigo Cicchelli Vel-
loso for his interest in the musical application of the proto-
typed framework.

7. REFERENCES

[1] X. Amatriain, J. Bonada, A. Loscos, and J. Arcos,
“Content-based transformations,” inJournal of New
Music Research, 32(1), pp. 95–114, 2003.

[2] L. Pottier, “Dynamical spatialization of sound.
holophon : a graphic and algorithmic editor for
sigma1,” inDafx98 Proceedings, 1998.

[3] N. Peters, T. Lossius, J. Schacher, P. Baltazar, C. Bas-
cou, and T. Place, “A stratified approach for sound spa-
tialization,” in Proceedings of The 6th Sound and Mu-
sic Computing Conference, 2009.

[4] N. Peters, “Proposing spatdif - the spatial sound
description interchange format,” inProceedings of
the 2008 International Computer Music Conference,
Belfast, 2008.

[5] T. Place and T. Lossius, “Jamoma: A modular standard
for structuring patches in max,” inProceeding of the
International Computer Music Conference 2006, 2006.

[6] D.Schwarz and M. Wright, “Extensions and applica-
tions of the sdif sound description interchange format,”
in Proceedings of the International Computer Music
Conference, Berlin, 2000.

[7] M. Klingbeil, “Software for spectral analysis, edit-
ing, and synthesis,” inProceedings of the International
Computer Music Conference, Barcelona, 2005.

[8] SWIG. http://www.swig.org/.

[9] Groovy. http://groovy.codehaus.org/.

http://www.gmem.org
http://www.swig.org/
http://groovy.codehaus.org/

	 1. Introduction
	 2. Holo-Edit features
	2.1 Workflow
	2.2 Multitrack Data representation and editing
	2.3 Data Recording via OSC
	2.4 Generation/transformation plugins

	 3. Motivations
	 4. Adaptive Framework
	4.1 SDIF Data import and Visualization
	4.2 Direct Mapping Plugins
	4.3 Script interface
	4.4 User case: sound brightness mapping

	 5. Conclusions and Future work
	 6. Acknowledgments
	 7. References

